If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+6t-324=0
a = 4.9; b = 6; c = -324;
Δ = b2-4ac
Δ = 62-4·4.9·(-324)
Δ = 6386.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-\sqrt{6386.4}}{2*4.9}=\frac{-6-\sqrt{6386.4}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+\sqrt{6386.4}}{2*4.9}=\frac{-6+\sqrt{6386.4}}{9.8} $
| 10x+7-8=-13 | | 2w+4=31 | | 3=n+94 | | X+4+5=-1+x | | 50-6=11*x | | Y=-16x^2+119x+73 | | 5a=25- | | -10=j/2 | | 4+5=6+x | | 60=1/336h | | 2x+(3/5)=6* | | 6x-5-2x=35 | | x3−7=11 | | 1/4*(x-48)-36=24 | | 15y+21=18 | | 1/10=(x+11)/8 | | 12-3×(2+2)=x | | -252=-18m | | 8(-a+8)=104 | | 3(2x-4)=5x-(3x-7) | | 200=60+15t | | 3{2x-4}=5x-{3x-7 | | 36000+4000x=51,000+1500x | | 2y-6=80 | | 8x-3=-2x-3 | | .34x-18=10x-934x−18=10x−9 | | n+8/15=1 | | 34x-18=10x-934x−18=10x−9 | | 5g+8+5=3g-g+10 | | `5g+8+5=3g-g+10` | | 98-0.54(x)=2(2+0.54(x) | | (-7x)-18=-53 |